Extensions 1→N→G→Q→1 with N=C26 and Q=C23

Direct product G=N×Q with N=C26 and Q=C23
dρLabelID
C23×C26208C2^3xC26208,51

Semidirect products G=N:Q with N=C26 and Q=C23
extensionφ:Q→Aut NdρLabelID
C26⋊C23 = C23×D13φ: C23/C22C2 ⊆ Aut C26104C26:C2^3208,50

Non-split extensions G=N.Q with N=C26 and Q=C23
extensionφ:Q→Aut NdρLabelID
C26.1C23 = C2×Dic26φ: C23/C22C2 ⊆ Aut C26208C26.1C2^3208,35
C26.2C23 = C2×C4×D13φ: C23/C22C2 ⊆ Aut C26104C26.2C2^3208,36
C26.3C23 = C2×D52φ: C23/C22C2 ⊆ Aut C26104C26.3C2^3208,37
C26.4C23 = D525C2φ: C23/C22C2 ⊆ Aut C261042C26.4C2^3208,38
C26.5C23 = D4×D13φ: C23/C22C2 ⊆ Aut C26524+C26.5C2^3208,39
C26.6C23 = D42D13φ: C23/C22C2 ⊆ Aut C261044-C26.6C2^3208,40
C26.7C23 = Q8×D13φ: C23/C22C2 ⊆ Aut C261044-C26.7C2^3208,41
C26.8C23 = D52⋊C2φ: C23/C22C2 ⊆ Aut C261044+C26.8C2^3208,42
C26.9C23 = C22×Dic13φ: C23/C22C2 ⊆ Aut C26208C26.9C2^3208,43
C26.10C23 = C2×C13⋊D4φ: C23/C22C2 ⊆ Aut C26104C26.10C2^3208,44
C26.11C23 = D4×C26central extension (φ=1)104C26.11C2^3208,46
C26.12C23 = Q8×C26central extension (φ=1)208C26.12C2^3208,47
C26.13C23 = C13×C4○D4central extension (φ=1)1042C26.13C2^3208,48

׿
×
𝔽